
Eur. Phys. J. B 7, 251–262 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. Molecular models of interfacial friction between an entangled melt and a compatible polymer
brush (irreversibly grafted chains) are discussed. Progress since the 1992 model by Brochard and de Gennes
is described, including the impact of the experimental evidence obtained by Durliat (thesis, 1997). A new,
more realistic description of interfacial friction is adapted from the bulk tube renewal mechanism. It justifies
some earlier results more precisely. It additionally predicts a progressive thinning of the grafted layer when
the melt velocity exceeds some threshold value. An outline of the expected chain behaviour at very high
grafting densities is given. It includes topological effects similar to combing.

PACS. 83.50.Lh Interfacial and free surface flows; slip – 83.20.Fk Reptation theories –
36.20.Ey Conformation (statistics and dynamics)

1 Introduction

In 1931, Mooney showed that slip may occur at the inter-
face between a polymer melt and a solid wall [1]: the melt
velocity V at the wall is nonzero, and the velocity pro-
file extrapolates to zero beyond the solid wall. The corre-
sponding distance b beyond the interface is known as the
extrapolation length1. Such slip occurs when a very low me-
chanical coupling between the melt and the solid wall can
be obtained. Conversely, the presence of anchored poly-
mer chains at the interface increases friction significantly
and thus reduces slippage. In such cases, the slip veloc-
ity is usually much too low to be observed, because the
extrapolation length is much shorter than the characteris-
tic sample thickness. But when the outflow is increased, a
slip transition is observed as a pressure drop in capillary
flows [3–7]: at low flow rates, the behaviour is compatible
with a classical Poiseuille flow (i.e., no observable slip),
whereas at higher flow rates, a high slip velocity is infered
from the pressure drop along the capillary, which is lower
than that expected from a no-slip assumption.

This feature is important both from a fundamental
point of view and because of its applications. Indeed, it
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The friction between the solid wall and each monomer that is
in contact with it is independent of the melt chain length. On
the opposite, the melt viscosity strongly depends on the melt
molecular weight. Hence, very high values of the extrapolation
length can be obtained for long chains.

is believed to have implications for extrusion processes: it
might account for some of the instabilities that appear in
the extrudate aspect at high imposed flow rates [4,8]. One
explanation for the slip transition is that when anchored
chains stretch at high fluid velocities, their interactions
with the melt are reduced and slippage is enhanced. For
extrusion, the anchored chains are adsorbed on the wall.
In such a situation, the slip transition is sometimes caused
not only by chain stretching, but also by chain debond-
ing [7] under flow. In the present paper, we concentrate
on situations (both experimental and theoretical) where
no debonding takes place, and where it is thus possible
to infer and to test some hypothesis on the dynamics of
entangled flexible polymers.

In order to investigate the effect of interfacial chains
in a controled manner, Durliat, Folkers, Hervet, Léger,
Massey and Migler led carefully designed experiments
[9–14]. Couette flow was chosen for the shear stress to be
uniform: no shear-dependent bulk phenomenon should oc-
cur at the interface specifically because of the non-uniform
shear stress, as it could in capillary experiments with
Poiseuille flow. The experimental set-up makes it possible
to detect and to measure not only the high slip velocities,
but also the low slippage velocities V that occur before
the slip transition. Surface treatment is essential for the
control of the presence and number of polymer chains at
the interface; the theoretical interpretation is made easier
because it is possible to use grafted, reasonably monodis-
perse chains (N monomers) rather than adsorbed layers.
Melts of different degrees of polymerization (P monomers
per chain) are used.

The typical observed variations of b(V ) are shown in
Figure 1a. A low slip regime (b = b0 ≈ 1 to 3 µm) is
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Fig. 1. Extrapolation length b as a function of the melt velocity
V at the interface: low slip plateau at small velocity, marginal
regime with b ∝ V , high slip plateau at high velocities. (a)
Typical aspect of the experimental curves. (b) Predictions of
the 1992 model: the drop of b(V ) at V = V ? is not observed
experimentally.

Fig. 2. Dependence of the threshold velocity V ? on the
grafting density σ, as obtained experimentally by Durliat
(schematic outline).

present at low velocities (V < V ? ≈ 10 µm/s) and a high
slip regime (b = b∞ ≈ 30 to 100 µm) occurs at high veloc-
ities (V > V∞ ≈ 100 µm/s). In the intermediate regime
(V ? < V < V∞), the extrapolation length b increases lin-
early with velocity2. Recent work by Durliat [14] made
it possible to control the grafting density σ. The corre-
sponding variation of the critical velocity V ?(σ) could be
obtained (Fig. 2).

Since the observed extrapolation lengths b are much
greater than the chain dimensions (radii of gyration of at
most 50 nm), the velocity field can be considered as uni-
form on the molecular scale. Therefore, we need to model
the interactions between grafted chains and a melt mov-
ing at velocity V . The 1992 model built by Brochard and
de Gennes [15] accounts for most features of the experi-
mental results available at the time. It correctly predicts
the low slip regime at low velocities, the marginal regime
(b ∝ V ) at intermediate velocities (V ? ≤ V ≤ V∞) and
the high slip at high velocities. It also predicts the correct
dependence of V ? on the melt molecular weight P .

It additionally predicts, however, a sharp drop of the
extrapolation length b(V ) just before the marginal regime,
for V ' V ? (Fig. 1b). No such drop was observed, and at-

2 In the case of adsorbed chains, the dependence of the ex-
trapolation length on the velocity is usually non-linear: b ∝ V α,
with α = 0.5 to 1 [14]. We here only consider brushes. The ob-
served exponent α is then equal to unity.

tempts were made to modify the model in order to elimi-
nate this aspect of the predictions.

In the present paper, we summarize the improvements
that were brought to the 1992 model [16–20]: most exper-
imental results can be explained, which allows for much
confidence in the modified model, even though there re-
mains a strong discrepancy in the absolute orders of mag-
nitude. We also present a new approach of the friction
mechanism [21] and we outline a topologically driven be-
haviour (combing effect) at very high grafting densities.

2 The 1992 model

We here present the main elements of the 1992 model, in
order to determine in which way it can be modified.

In the 1992 model, the description of friction is based
on the forced sliding mechanism [22,15]3. The conforma-
tions of the grafted N chains can be considered as frozen,
because their relaxation is similar to that of branched
polymers, i.e., very slow [24]. Hence, mobile chains P that
get into close contact with anN chain have to slide quickly
around the grafted obstacle since their Edwards’ tube is
being pinched by the fixed N obstacle. The allowed slid-
ing time ts is fixed by the pinching time, which is typically

the tube diameter divided by the velocity (ts = aN
1/2
e /V ).

The resulting curvilinear, sliding velocity Vtube = Ltube/ts
(where Ltube = (P/Ne)Λe is the tube length) is much
faster than the overall melt velocity V :

Vtube =
P

Ne
V. (1)

Consequently, the additional dissipation T Ṡ ' Pζ0V
2
tube

caused by each sliding P chain corresponds to the work of
a force

f '
P 3

N2
e

ζ0V ' aη
rep
P V (2)

exerted by each P chain that is entangled with a grafted
chain, where ηrepP is the expression of the melt viscosity as
derived from the reptation models [25,23].

The total force F exerted on a grafted chain depends
on the average number X of P chains entangled with each
grafted chain:

F = X f. (3)

In the 1992 model, the trapping number X is derived from
the total entanglement assumption: all P chains are sup-
posed to be trapped if they intersect the volume pervaded
by the grafted N chain. Hence (taking P ≥ N , which is
the experimental situation), it reads:

Xtot = N1/2. (4)

3 A similar mechanism was introduced by de Gennes to give
a direct derivation of the viscosity of an entangled melt [23].
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If the force F is weak enough (F ≤ kT/(aN1/2)), the
grafted chain does not deform. Consequently, the trapping
number is constant and friction is proportional to velocity:
F = Xf ∝ V . If σ/a2 is the number of grafted chains per
unit area, this corresponds to a constant extrapolation
length

b =
a2ηPV

σF
=

a

σN1/2

ηP

ηrepP

≡ b0, (5)

valid at velocities smaller than some value V0 given by
F ' kT/(aN1/2), i.e., N1/2aηrepP V0 ' kT/(aN1/2).

At higher velocities, the chain is deformed and the
trapping number is modified. Indeed, the chain is turned
into a string of blobs of size Λ given by F ' kT/Λ (Pin-
cus’ relation [26]). The corresponding trapping number
X = (N/g)X(g) (where g is the number of monomers per
blob, with Λ = ag1/2) is greater than the initial value
X(N) given by equation (4). As a result, the chain is
stretched even further and friction is enhanced, in a self-
consistent manner. This feature causes b to decrease with
increasing V in this regime V > V0, instead of being inde-
pendent of velocity. Because the exponent value is 1/2 in
equation (4), the decrease of b(V ) is a sharp drop, as was
described above (Fig. 1b). Indeed, we have simultaneously
X = (N/g)g1/2 and F = Xf = kT/(ag1/2), which implies
V = V0 for all g.

When the blob size Λ reaches the entanglement tube

diameter Λe ' aN
1/2
e , it has decreased by a factor

(N/Ne)
1/2. The force is then given by F ' kT/Λe, and the

extrapolation length b = (a2ηPV0/(σF ) = (Ne/N)1/2b0
(when V just exceeds V0) is much lower4 than for lower
velocities V < V0. This marks the onset of the marginal
regime [15] (V ≥ V ?, with V ? ≈ V0 in the present case),
in which the force F remains constant over a whole range
of melt velocities. Indeed, if the blob size were to decrease
any further, complete disentanglement would take place,
friction would be significantly lowered and the blobs would
swell again. If, on the opposite, the blob size were larger
than Λe, the exerted force would stretch the chain beyond
Λe. Hence, elongation is constant (Λ ' Λe) and conse-
quently, the force is constant5:

F ? ' kT/Λe (6)

and the extrapolation length is proportional to velocity:
b ∝ V/F ? ∝ V .

4 Experimentally, the velocity V0 is reached progressively and
there should be a transition between b = b0 and the lower
value of b. Here, we only describe the permanent regime, where
b = (Ne/N)1/2b0 as soon as V just exceeds V0.

5 Another, more realistic interpretation [16,17] of the
marginal regime is that the main part of the chain (“stem”)
is elongated just beyond Λe. The stem is subjected to a weak
friction from the melt (disentangled regime) but it is stretched
by the tension that is transmitted from the stronger friction on
the “flower” (weakly stretched chain free end). The size of the
flower naturally adjusts so that the remaining stem only feel
the disentangled friction (i.e., Λ ' Λe), since the flower pre-
cisely consists in the part of the chain which is less deformed
(Λ > Λe).

Along with the entangled friction just described, there
remains a disentangled, Rouse friction acting on every
monomer: FRouse = Nζ0V . In the marginal regime, the
entangled component of friction is constant (F ' F ? =
kT/Λe). Hence [15], the Rouse friction becomes dominant
at high velocities V ≥ VRouse:

VRouse '
1

NN
1/2
e

kT

aζ0
(7)

F ' Nζ0V. (8)

The corresponding extrapolation length is constant and
the origin of the final plateau b = b∞ is thus explained.

The predictions of the 1992 model account well for the
main features of the experimental behaviour of the grafted
surface. There remains the undesired prediction of a drop
of b(V ), however. In an attempt to improve this point, each
of the main elements of the model can be modified. In the
following sections, we study successively the changes that
can be brought by altering the friction mechanism, the
trapping number, or by including collective effects of the
grafted chains when the grafting density is increased.

3 Changing the friction mechanism

The sliding mechanism described for the P chains is in fact
unrealistic at low velocities. Indeed, the reptation time
Trep(P ) of the P chains is shorter than the sliding time
ts, for all velocities V < V ?? considered so far, where:

V ?? =
Λe

Trep(P )
· (9)

Hence, P chains spontaneously slide out from the N ob-
stacle long before they could be forced to do so6.

The forced sliding mechanism is not adequate to de-
scribe chain motion at high velocities either. Indeed, above
V ??, the forced sliding time ts is shorter than the repta-
tion time of P chains. As a result, if one P chain is forced
to slide, it creates a net volume transfer near its end at too
high a rate for relaxation to occur by mere reptation of
the surrounding chains: distortion of the melt is likely to
occur. Hence, the mechanism would have to be modified
to include such distortions.

In the following paragraphs, we consider another fric-
tion mechanism which probably describes the chain mo-
tion more closely and which yields a consistent picture
of both the low velocity regime (V < V ??) and the high
velocity regime (V > V ??).

6 The evaluation of the extra dissipation due to entangle-
ments between P chains and N chains remains valid, however.
But it must be considered as an average, slow drift, added to
the diffusive reptation of P chains. Furthermore, the force f ,
as worked out therefrom (Eq. (2)), has no more significance
as such, since each P chain does not dissipate during the en-
tire time ts. For the same reason, the work of the friction that
is exerted on each P chain is insufficient to deform it: in all
the models reviewed in this paper, whenever relevant, the melt
chains are supposed to be Gaussian.
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Tube renewal

The forced sliding mechanism is based on the considera-
tion of the Edwards’ tube of a P chain, which is squeezed
by the N chain. Conversely, we here consider the tube of
the N chain. It is made of short strands of the surrounding
melt chains which locally act on the grafted chain as topo-
logical constraints. These P chains themselves are contin-
ually diffusing by reptation. Hence, the tube of the grafted
N chain is progressively renewed as P chains diffuse away
and are replaced with other chains. Since the conforma-
tions of new chains are never identical to those of previous
chains, the tube of the N chain fluctuates. At low veloc-
ities, such fluctuations are equivalent to a friction force
(fluctuation-dissipation theorem)7.

This concept of tube renewal was introduced by Klein
[27] and by Daoud and de Gennes [28] for the diffusion
of a long N chain in a melt of shorter P chains: if the
test chain is long enough, its own reptation among the P
chains is a slower diffusion process than this tube renewal
mechanism. We here adapt this concept to the case of
a grafted chain [21]: since the usual reptational motion
of the N chain is blocked due to grafting, tube renewal
constitutes the dominant relaxation process, even in the
case of longer surrounding chains8.

Let us consider one particular entanglement blob of
size Λe along the N chain. Many “quick” P chains enter
the blob and then go out in the reverse direction after a
short time. They induce small fluctuations of the N chain
in the blob. But “slow” chains remain for a longer time:
once the first end has entered the blob and after some
diffusion back and forth, such a slow P chain usually quits
the blob when the other end goes out, following the first.
Slow chains remain present in the blob during about a
reptation time Trep(P ) and exert topological constraints.
Hence, the characteristic time scale for tube renewal is the
reptation time. The corresponding characteristic distance
for blob fluctuations is of the order of the blob size Λe =

aN
1/2
e . Therefore, the diffusion constant of the blob9 is

7 This tube renewal mechanism is thus another way of de-
scribing the friction due to entanglements between grafted and
melt chains. In both cases, however, relaxation of the entan-
glements are due to the motion of the melt chains which is
quicker than that of the grafted chains (“branched” reptation,
see Ref. [24]).

8 Rearrangement of the grafted chain takes over for ultra-
long melt chains, in the network limit.

9 At a given time, a given strand of Ne monomers (of size
roughly Λe) has a definite orientation: its end-to-end vector is
either along the flow, or perpendicular to the flow, or in any
intermediate direction. The diffusion constant given by equa-
tion (10) in fact describes the fluctuations of such a strand
perpendicularly to its orientation. For instance, if it is ori-
ented along the flow, it will describe its fluctuations perpen-
dicularly to the flow. As long as the chain is not completely
stretched (V < V ? and thus Λ < Λe), the orientation of such
strands of Ne monomers are essentially random (the effect of
stretching on orientation is then dominant only for long strands
which have at least gΛ = Λ2/a2 monomers). Hence, as long as

given by:

D(Ne) =
(aN

1/2
e )2

Trep(P )

1

k
, (10)

where the constant k is to be chosen so as to obtain the
correct order of magnitude for the fluctuations10. The dif-
fusion of the whole N chain is thus characterized by:

D(N) =
Ne

N

(aN
1/2
e )2

Trep(P )

1

K
(11)

where the coefficient K includes both the constant k and
possible correlations between the diffusion motions of dif-
ferent blobs along the chain. The corresponding friction
coefficient for the chain in the melt at small velocities is
deduced from the fluctuation-dissipation theorem and the
friction force reads:

F = Kζ0
NP 3

N3
e

V. (12)

Chain conformation and friction at high velocities

The threshold V ?? (Eq. (9)) occurs within the marginal
regime (V ? < V ?? < VRouse): grafted chains are elon-
gated, with Λ = Λe. The forced sliding mechanism (rein-
terpreted as an average drift) is suitable for describing the
marginal regime at low velocities (V ? < V < V ??). But
the tube renewal approach gives a new insight into the
nature of the marginal regime and into chain behaviour
at higher velocities.

In the marginal regime, the whole “stem” (upstream
part of the chain) is supposed to be a string of blobs of
size Λe or slightly smaller. Since the chain is significantly
oriented on the Λe length scale, fluctuations due to the
melt chains take place mainly in the directions perpendic-
ular to stretching. Correlatively, friction in the direction
of stretching (direction of flow) is weak in the stem. Only
the downstream part of the chain (“flower”) is subjected
to significant friction.

Above V = V ??, the grafted chain is progressively
flushed against the wall, i.e., its lateral fluctuations are
progressively reduced (Fig. 3). This transition can be un-
derstood very precisely in the tube renewal approach. In
the direction of flow, the interval ∆x between consecu-
tive blobs is always of the order of Λe (Fig. 4a). In the
perpendicular directions, the distance ∆y between con-
secutive blobs depends both on diffusion (characterized by
Eq. (10)) which tends to increase the interval (Fig. 4b),
and on the chain tension F ? ' kT/Λe which tends to
reduce it (Fig. 4c).

Below V ??, the diffusion process is strong enough for
tension to play a role. The chain tension F ? gives rise

V < V ?, equation (10) describes the diffusion in all directions
alike. In particular, it can be used to estimate the friction in
the direction of flow.
10 The value of k will be fixed later on (see Sect. 7).
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Fig. 3. Aspect of a grafted chain in the
marginal regime. The blob size is of or-
der Λe and the chain length is of order
ΛeN/Ne. The lateral fluctuations of the
chain depend on velocity. (a) When V <
V ??, the transverse radius of gyration of
the chain is unchanged: R⊥ ' aN1/2. (b)
At intermediate velocities V ?? < V <
V ???, the lateral fluctuations are reduced:
R⊥ ∝ V −1/2. (c) When V > V ???, the
chain is completely flushed against the wall
and the transverse radius of gyration is
close to the blob size: R⊥ ' Λe.

Fig. 4. Conformation of a grafted chain in the marginal regime. (a) In the direction of stretching, the interval between successive
blobs is ∆x ' Λe; in the perpendicular direction, the blobs form a random walk of unit steplength ∆y. (b) The reptation of
neighbouring chains makes the blobs fluctuate perpendicularly to the direction of stretching. (c) Due to the tension F ∗ ' kT/Λe
of the chain, the transverse interval ∆y between blobs is drawn back by a force F⊥.

to a pull-back force F⊥ ' (∆y/∆x)F ? which tends to
align consecutive blobs. Deviations from the mean posi-
tion ∆y = 0 correspond to an elastic energy of order
F⊥∆y. The diffusion-driven, thermal exploration ∆y is
such that F⊥∆y ' kT . Taking ∆x = Λe and F ? = kT/Λe,
this yields ∆y ' Λe: this is the marginal regime as de-
scribed earlier, with unperturbed transverse radius of gy-
ration R⊥ ' ∆y(N/Ne)

1/2 = aN1/2 (Fig. 3a).
Above V ??, the chain tension plays no role because

diffusion is slower and provides the upper bound for the
chain fluctuations: the diffusion time L/V (where L '
(N/Ne)Λe is the length of the stretched chain conforma-
tion) corresponds to lateral fluctuations of order:

R⊥ =

[
D(Ne)

L

V

]1/2

= aN1/2

[
V ??

V

]1/2

(13)

and the chain conformation corresponds to Figure 3b.
At a higher velocity V ??? = (N/Ne)V

??, the fluctua-
tions are so slow that the stem of the chain is now straight

(it is a “trunk” with R⊥ ' Λe, see Fig. 3c). Using neu-
tron reflectivity, it might be possible to test whether the
grafted chains are indeed flushed against the solid wall
progressively from R⊥ ' RN to R⊥ ' Λe.

The friction is still of the marginal type (constant
F ? = kT/Λe) in these regimes, since the stem-flower de-
scription remains valid. Only at higher velocities does the
Rouse (non-entangled) friction FRouse = nζ0V on the
trunk become dominant: as a consequence, above VRouse,
the chain starts to elongate further, until it is completely
stretched (L ' Na) above V = V3 = kT/(aNζ0). Com-
plete stretching has no significant influence on friction,
however. Hence, no change should be observable macro-
scopically at V3.

Formal equivalence with forced sliding mechanism

Comparing equations (2, 3) with equation (12), we see
that the forced sliding and the tube renewal mechanisms
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are formally equivalent if we set:

X ≡ K
N

Ne
· (14)

Hence, the expression for friction remains unchanged and
no better predictions can be drawn from the tube renewal
mechanism as compared to those of the 1992 forced sliding
mechanism. It must be pointed out, however, that the tube
renewal mechanism is far more realistic (see discussion
after Eq. (9)) and brings a deeper understanding of the
chain behaviour. These points are developed in Section 6.

4 Changing the trapping number

It was just shown in Section 3 that improving the elemen-
tary friction mechanism of the 1992 model is not sufficient
to modify the predictions for the extrapolation length b(V )
(see Eq. (14)). In the present section, we investigate the
improvements that can be brought by a modification of
the trapping number X (Eq. (3)), which is the average
number of melt chains P that are entangled with each
grafted chain N .

The models

In the 1992 model, the trapping number is derived from
the total entanglement assumption: any P chain that is
present in the volume occupied by the grafted chain is sub-
jected to entanglements from the grafted chain11. When
P ≥ N , the trapping number is thus given by equation (4).
The local version of the total entanglement assumption
corresponds to one possible description of an entangle-
ment: in each entanglement blob Λe along the grafted

chain N , all N
1/2
e melt chain strands that are present do

participate in the entanglement with the grafted chain.
Alternative descriptions have been suggested. The bi-

nary entanglement model [18] stipulates that in each en-
tanglement blob, the grafted chain interacts only with
one other chain. For the whole chain, this means that it
is usually entangled with only N/Ne melt chains. Very
long chains, however (N > N? = N2

e ), do trap all chains
present (since the total number of melt chains, N1/2, is
then smaller than the number of available entanglements,
N/Ne). But the corresponding threshold molecular weight
(N?) is well beyond reach for current polymers12. The

11 In the present discussion, we suppose that melt chains are
longer than grafted chains (P ≥ N). The values of the trapping
number in the reverse situation can be deduced immediately,
see equation (17).
12 In reference [20], the real value of the threshold molecu-
lar weight is computed using tabulated data on some common
polymer melts. The results should make it possible to compare
the threshold values for different polymers (if such a threshold
does exist). There remains a general, undetermined, multiplica-
tive constant, however, since numerical factors are omitted in
the whole study.

trapping number predicted by the binary entanglement
model is thus given by the number of entanglements along
the grafted chain:

Xbin =
N

Ne
(P ≥ N). (15)

The correlated binary entanglement model was introduced
by Brochard, Ajdari, Leibler, Rubinstein and Viovy [17].
Entanglements are still supposed to be binary interactions
(only two chains participate). But correlations are intro-
duced: consider the grafted chain and a particular melt
chain which is entangled with it. These two chains have
a certain number x of entanglement blobs Λe in common.
The interaction due to this melt chain is supposed to be
lessened by the factor x. On the whole, the trapping num-
ber is thus supposed to beX = (N/Ne)/x in the correlated
binary entanglement model13:

Xcor.bin. =
N1/2

N
1/2
e

(P ≥ N). (16)

Given the expression of the trapping number in the long
melt chain limit (P ≥ N), its value in the reverse situation
P ≤ N is obtained by decomposing the longer N chain
into sub-chains of P monomers:

XP≤N =
N

P
[X(N)|N=P ] (17)

where X(N) is given by equations (4, 15 or 16).

Predictions

Comparison of equations (4, 16) shows that the trapping
number X is proportional to N1/2 both in the total en-
tanglement model and in the correlated binary entangle-
ment model. Hence, both models yield the same qualita-
tive results. In particular, sudden elongation of the grafted
chains occurs from the coil conformation to the marginal
regime conformation (see Sect. 2). This corresponds to the
sharp drop of the extrapolation length b(V ), which was
described earlier as the main mismatch with experimental
observations. Hence, the correlated binary entanglement
model does not seem to bring any improvement on this
point14.

Equation (15) shows that in the binary entanglement
model, the trapping number is proportional to N . As
a consequence, adapting the argument of Section 2, we
find that the trapping number of the elongated chain,
X = (N/g)X(g) (where g is the number of monomers

13 Whatever the validity of expression (16) itself, the justifica-
tion for it [17] seems inconsistent as such. Indeed, the quantity
N/Ne is based on the binary assumption and means one in-

teraction per entanglement blob (out of N
1/2
e chain strands

that are present within a blob), whereas x corresponds to one
correlation for each common blob.
14 Many-chain effects, however, erase this discrepancy, as will
be shown in Section 5.
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per blob) is equal to the initial value X(N) given by equa-
tion (15). Hence, elongation occurs progressively with no
change in the trapping number. Friction is still propor-
tional to velocity and the extrapolation length displays
no decrease [18] before it reaches the marginal regime.

Hence, the predictions of the binary entanglement
model are better than those of the original, total entangle-
ment model. They qualitatively match the experimental
results for the extrapolation length15. Hence, this is one
way of correcting the predictions.

5 Influence of the grafting density

The 1992 model is essentially a one-chain model. Although
it was shown in Section 4 that a proper choice for the ex-
pression of the trapping number was one way of obtaining
qualitatively correct predictions as for the extrapolation
length, the modifications presented in Sections 3 and 4 do
not incorporate any many-chain feature. In the present
section, we describe how the effect of the grafting density
can be taken into account [19].

As the grafting density is increased, the number σP of
trapped melt chains per unit area of the solid surface also
increases:

σP = σX. (18)

But there exists a geometrical limitation: all trapped P
chains have to be located within reaching distance from
the surface. If we restrict to P ≥ N , the centers of gravity
of the P chains have to be located within a distance of
order RP from the surface so that the chains do reach
the grafted layer. Hence, the maximum chain trapping is
given by:

σPmax = a2 RP

Pa3
= P−1/2. (19)

This maximum overall trapping is reached when the graft-
ing density is greater than σ? defined by:

σ? ≡
1

P 1/2X
(20)

where the explicit expression depends on the model for X
(see Sect. 4). The change at σ ' σ? is due to the onset
of interference between the grafted chains: above σ ' σ?,
although each melt chain can be trapped simultaneously
by several grafted chains, it still must be counted as only
one chain that is forced to slide out16.

Predictions

Beyond σ?, the overall trapping is fixed at σP = σPmax.
Hence, the macroscopic surface behaviour is not sensitive

15 No quantitative comparison can be drawn at this point,
since this is still a one-chain model. Effects of the grafting
density are addressed in the next section.
16 In the framework of the tube renewal mechanism, the tran-
sition is described in different terms, see Section 6.

to grafting any more. It does not depend on the model for
the trapping number X either. In other words, the effect of
grafting has saturated. At low velocities, the extrapolation
length b is given by:

b0 '
a

σPmax
' aP 1/2 = RP . (21)

At higher velocities, grafted chains start to elongate. As
was pointed out in Section 4, elongation can only enhance
the trapping efficiency of each grafted chain17. Hence, in
the saturated grafting regime, elongation can only reinforce
saturation. Correlatively, the overall amount of trapped
chains remains fixed at σP = σPmax and the friction
stress remains proportional to velocity even when chains
are elongated:

τ = σPmax f (σ ≥ σ?, V ≤ V ?) (22)

where f is given by equation (2). The extrapolation length
is thus constant and equal to b0 (Eq. (21)). The velocity
V0 at which grafted chains start to elongate has no macro-
scopic signature.

Only the marginal regime has an effect on friction (b ∝
V ). In this regime, as was described in Section 2, the blob
size of the elongated chains is equal to the entanglement
blob size Λe, the force exerted on each grafted is constant
(Eq. (6)) and the overall stress is given by:

τ = σ
kT

Λe
· (23)

Comparison of equations (22, 23) shows that the thresh-
old velocity V ? for the onset of the marginal regime is
proportional to the grafting density:

V ? ∝ σ. (24)

The concept of saturated grafting has thus very impor-
tant consequences. (i) The value of the extrapolation
length (Eq. (21)), is independent of the grafting den-
sity. (ii) The extrapolation length dependence on velocity
is monotonous: no sharp decrease is predicted. (iii) The
threshold velocity V ? is proportional to the grafting den-
sity. All these predictions, which are independent of any
model for the one-chain trapping number, must be com-
pared to experimental results.

Experimental results

The recent results of the experiments by Durliat [14] pro-
vide interesting points of comparison with the models. The
most interesting feature of his work is that a good control
of the grafting density was achieved. The plateau value b0

17 In the 1992 total entanglement model and in the correlated
binary entanglement number, the trapping number X(V =
0) ∝ N1/2 increases upon elongation, whereas it is constant
(X(V ) ∝ N) in the binary entanglement model.
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of the extrapolation length was found to be independent
of grafting18:

bexp0 (σ) = const. (25)

And the threshold velocity V ? was found to be propor-
tional to velocity:

V ?exp ∝ σ (26)

(except in the range of very high grafting densities, see
Sect. 8).

These results can be considered as the signature of
the saturated grafting regime (see Eqs. (21, 24)). The de-
pendence of the extrapolation length b on the molecular
weight P of the melt chains, is weak. The range is not wide
enough, however, to be compared quantitatively with the
power law of equation (21).

Hence, all experimental results indicate that the sys-
tem is in the saturated grafting regime. There remains a
strong discrepancy, however, concerning the absolute or-
der of magnitude. In this regime, the extrapolation length
should be of the order of the radius of gyration RP of
the melt chains, i.e., about 50 nm. Measured values of b0,
however, are in the range of 1 to 3 µm. This discrepancy
is yet unexplained. Possible origins are the numerical fac-
tors that were omitted in the whole theoretical study, as
well as the perturbed conformations of the melt chains in
the vicinity of the solid wall which might slightly influence
entanglements.

At any rate, these results show that it was essential to
take into account the influence of grafting, since the pre-
dictions are substantially altered in the saturated regime.

6 Specific improvements brought
by the tube renewal approach

The tube renewal approach, described in Section 3, pro-
vides a new insight into the low velocity regime (low, con-
stant b = b0) and into the marginal regime (b ∝ V ). It
also allows for a discussion of correlations between entan-
glements.

Low velocities

It was shown in Section 3 that for a number of reasons, the
tube renewal mechanism is more realistic than the forced
sliding mechanism at small V (for instance forced sliding
cannot exist at low velocities, because chains escape by
reptation).

The forced sliding and tube renewal friction mecha-
nisms are valid when the melt chains are very mobile. It is
also possible, however, that the grafted chain behave like a
hard sphere, dragging all the fluid around it. The resulting

18 In the linear regime described in the last sections (one-
chain models), the extrapolation length was inversely propor-
tional to the grafting density: b ' (a2ηPV )/(σF ).

“Stokes” friction can be written as FStokes ' RNηPV , by
analogy with the drag of a solid sphere in a viscous fluid
at low Reynolds numbers. The easier mechanism yields
the real friction. Comparing this expression with equa-
tion (12), we find a natural threshold:

N?
K =

N2
e

K2
(27)

where K is the tube renewal coefficient (Eq. (12)). The
friction is given by the forced sliding or tube renewal mech-
anisms for N ≤ N?

K , and by the Stokes formula for higher
molecular weights. Using K = 1 as suggested by the dis-
cussion of correlations (see below), one recovers the results
of the binary entanglement model (Eq. (14)) and the cor-
responding threshold (see discussion before Eq. (15)).

The regime of saturated grafting can also be inter-
preted in this context when P > N . Indeed, consider a
melt chain whose center of gravity is roughly RP away
from the solid surface, so that it substantially interacts
with the grafted layer (Fig. 5). The grafted chains appear
as immobile obstacles. If they are sufficiently numerous,
their effect on the melt chain is important. It cannot ex-
ceed, however, the effect of equivalent melt chains located
below the surface level if it were in bulk19 (Fig. 5b). In
the equivalent bulk situation, those immobile chains are
located at roughly RP below the surface. The correspond-
ing extrapolation length is thus of the order of b ' RP .
Hence, one recovers the result of the saturated grafting
regime, (Eq. (21)) independently of any model [21].

When P < N , extinction of the melt velocity inside
the brush occurs before the grafting density saturates [21],
i.e., the extrapolation length must be counted from the
brush outer edge. The detailed brush conformation and
concentration profile is then important. We do not develop
this point.

Marginal regime

The constant friction force F = kT/Λe in the marginal
regime is due to the slight orientational bias of the
stretched grafted chains. At low velocities (V ≤ V ??),
lateral fluctuations of the grafted chains are limited
by the tension that is transmitted along them. Above
V ??, lateral fluctuations are reduced because diffusion is
slowed down. These features, which were developed in
Section 3, are specific results of the tube renewal mecha-
nism.

The velocity V∞ that experimentally marks the end of
the marginal regime received successive interpretations.

19 Such a comparison between grafted chains and equivalent
melt chains may seem rather far-fetched: in the equivalent
bulk situation, an entanglement between two chains is released
through the sliding of either chain, whereas in the real situ-
ation, the grafted chains have one end fixed and thus cannot
slide out. In fact, the extra freedom in the equivalent bulk
situation only reduces the efficiency of the entanglements by
roughly a factor two. Hence, it does not alter the order of mag-
nitude of the effect, and the comparison is thus relevant.
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Fig. 5. Saturated grafting for P > N .
Grafted chains (N) are present up to a dis-
tance RN from the wall. If they are suffi-
ciently densely grafted, they globally be-
have like P chains with their centres of
gravity located at a distance RP below
the brush outer edge. The velocity profile
then extrapolates to zero there. Hence, the
smallest possible extrapolation length is of
the order of the radius of gyration RP of
the melt chains.

In the 1992 model, it was interpreted as the crossover to
Rouse friction (i.e., V∞ = VRouse). In reference [19], it was
argued that the melt must behave like a quenched network
at V > V ??. The threshold V∞ was therefore identified
with V ??. The tube renewal mechanism now shows that
the friction F ' F ? is unchanged above V ??. Thus, we go
back to the initial interpretation: V∞ = VRouse.

Correlations

It was shown in Section 3 that it was a priori possible to
choose any value for the coefficient K of the tube renewal
mechanism (Eq. (11)). In fact, choosing K so that it de-
pends on N or on P amounts to introduce correlations
between the local movements of a melt chain in different
entanglement blobs along the grafted chain.

Indeed, the tube renewal friction force on a grafted
chain (Eq. (12)) is equivalent to the following diffusion
constant for the grafted chain:

DK(N) =
1

X
D(Ne), (28)

whereX is the trapping number that corresponds to coeffi-
cient K (Eq. (14)) and where the constant k was omitted
(Eq. (10)). Hence, X is the number of sub-objects that
contribute to the diffusion of the whole chain indepen-
dently. If we write:

X =
1

x

N

Ne
, (29)

the system behaves as if the N/Ne entanglement blobs Λe
along the N chain were gathered into groups of x = K−1

blobs each20, such that the diffusion constant of each
group is D(Ne). Hence, each group behaves as if all x
blobs were subjected simultaneously to the same fluctua-
tion. Since fluctuations are due to the reptational motion
of the melt chains, this means that melt chains act upon

20 Whether these x blobs are spatially close to one another or
not does not matter.

the x different blobs in the same direction, as if each melt
chain had to pass on the same side of the grafted chain
(e.g., always upstream from the N chain) in the different
entanglement blobs.

It seems highly unlikely that such correlations be
present: although time correlations are clearly present
(when one melt chain slides out, all corresponding con-
straints are released in quite a short time), spatial corre-
lations such as those just described should not be present
(except at velocities close to V ??).

In Section 4, we presented models of the trapping num-
ber X in which the corresponding parameter K is non-
constant: K = Ne/N

1/2 in the total entanglement model,

K = N
1/2
e /N1/2 in the correlated binary entanglement

model. This feature alone might be sufficient to rule out
these models. The above argument concerning the absence
of correlations, however, does not take into account the
possible influence of stress fluctuations in the melt, due to
reptation (see Ref. [29] and the comments in [21], see also
Ref. [30]). Hence, further arguments or experimental tests
will be needed for further progress on this point, although
the present approach, based on the initial reptation the-
ory, rules out all models except the binary entanglement
model (K = 1 and X = N/Ne)

21.

7 Choice of a model?

It was shown in Section 5 that the experimental situ-
ation [14] corresponds to the saturated grafting regime
(Eq. (26)). In this regime, the overal friction of the grafted
layer is independent of the detailed friction of one chain
if it were alone: it does not depend on the model chosen
for the trapping number X (forced sliding mechanism)
or equivalently for the tube renewal coefficient K (see
Eq. (14)).

Hence, the models cannot be tested in this way. This
issue is important, however, since each model is based
on some assumption concerning the entanglements (total,

21 The above arguments in fact imply K = k. But further
arguments show that K = 1 (see Sect. 7 and Eq. (32)).
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binary or correlated binary entanglements for instance).
These assumptions concerning interfacial entanglements
(between a grafted, fixed chain, and moving, melt chains)
can be compared to the models that were developed to
predict the value of the entanglement mass of a polymer
from its molecular parameters (persistence length, chain
contour concentration22).

Different models

Discussing correlations in the tube renewal approach
shows that in fact only the binary entanglement model
(K = 1 or X = N/Ne) should be correct (Sect. 6). But
as was pointed out, this discussion is not sufficient be-
cause the tube renewal approach itself is based on repta-
tion and includes the corresponding limitations (viscosity
scales like P 3 instead of P 3.4). Hence, further arguments
are required to choose between the models.

P < N P > N

Model K X K X

Binary 1 N/Ne 1 N/Ne

Corr. Bin. N1/2
e /P 1/2 N/(P 1/2N1/2

e ) N1/2
e /N1/2 N1/2/N1/2

e

Total Ne/P
1/2 N/P 1/2 Ne/N

1/2 N1/2

Klein 1/P 1/2 N/(P 1/2Ne)

Monfort et al. N2
e /P N/(P 0.6Ne)

Apart from the three models presented in Section 4
(total, binary and correlated binary entanglement mod-
els), existing models for friction are the model by Klein
[33] and the model by Montfort, Marin and Monge [34].
Both are based on the tube renewal approach, but as they
were developed for a bulk situation, they only deal with
the situation of a long test chain N immersed in a melt of
shorter molecules, P < N : the reptation of the long test
chain N is slow and thus the tube renewal due to repta-
tion of the melt chains is relevant for the diffusion of the
test chain.

The values of the trapping number X and of the tube
renewal coefficient K in all these models are given above.

In the following paragraphs, arguments are taken
from comparison with the well-known disentangled fric-
tion regime and a suggestion is presented for a possible
comparison with experiments.

Consistence with non-entangled friction

At P ' Ne, the friction between the grafted chain N and
the melt evolves from a non-entangled situation (P < Ne)
to an entangled mechanism (P > Ne). At the transition,
friction is expected to display a smooth crossover. Indeed,
this transition is very similar to the bulk viscosity transi-
tion between non-entangled and entangled melt: although
the dependence on the molecular weight P is changed

22 For a detailed discussion, see the generic model by Graess-
ley and Edwards [31] and a review of the specific models by
Colby, Rubinstein and Viovy [32]. Additional remarks can be
found in [21].

at the transition (from P to P 3.4), no discontinuity ap-
pears23.

Friction in the non-entangled regime (P < Ne) is
known to be linear in N for short grafted chains: F =
Nζ0V . It is also known to be equivalent to the Stokes fric-
tion on a hard sphere for an athermal solvent (P ' 1):
F ' aN3/5η0V . In the intermediate situations (P ≥ 1),
friction can be obtained [17] as the result of the competi-
tion between the Stokes, hard sphere friction in the melt
(viscosity proportional to P ) and the Rouse friction. The
resulting expression for friction is given by24:

F ' aN3/5P−1/5 Pη0V (P ≤ N1/2) (30)

F ' Nζ0V (P ≥ N1/2). (31)

The above expressions for unentangled friction and the ex-
pressions for the entangled regime provided by the models
(N ≥ Ne and P ≥ Ne) coincide at the transition P ' Ne
if the tube renewal coefficient K is unity at the transition.
The corresponding form of K and X above the transition
are proportional to some power of P/Ne:

K =

(
P

Ne

)β
X =

N

Ne

(
P

Ne

)β
(P ≥ Ne). (32)

Comparison of this condition with the expressions from
all models leads to rule out the total entanglement model
and the models by Montfort et al. and by Klein: only
the binary and the correlated binary entanglement models
are compatible with this continuity condition. Any further
choice will require experimental tests.

A possible experimental test

In the case of short melt chains (P ≤ N), the binary and
the correlated binary entanglement models yield predic-
tions that have the same dependence on N : they differ by
a power of the melt chain length P . A comparison with
experiment on this basis would be rather non-conclusive
because P -dependences are not very well understood (P 3

versus P 3.4 problem).
A difference between the models, concerning the N -

dependences, can be found in the P ≥ N regime (long
melt chains). This regime has been studied in the slippage
experiments [14]. But the low grafting densities that were
achieved are still not low enough to avoid grafting satura-
tion (see Sect. 5). Hence, these experiments do not provide
a test between these models yet.

23 Conversely, at the corresponding transition for the grafted
chain in an entangled melt (P > Ne and N ≈ Ne), impor-
tant variations of the friction would be expected, since the
relaxation of a grafted chain in an entangled medium is very
much slower than that of a shorter chain: the relaxation time
is known to increase exponentially with the chain length [24].
24 For a derivation of this result in terms of a perturbation of
the velocity field, see [21].
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Since such low grafting densities are very difficult to
obtain at an interface, a similar situation in bulk has
to be found. But in bulk, if the test chain N is shorter
than the melt chains, then its own reptational motion is
the fastest relaxation process, and thus the tube renewal
mechanism cannot be observed. The only way out of this
is to lock reptation. This can be done by using a branched
molecule [24].

For instance, let us consider a star polymer made of
three or four arms (N monomers each). The usual repta-
tion motion of a linear molecule is locked. Hence, diffu-
sion of the molecule will occur mainly through two mech-
anisms: the Stokes hard sphere mechanism and the tube
renewal mechanism. For a melt of long P molecules, the
relevant mechanism is tube renewal, and the diffusion of
the test molecule reflects the details of this mechanism,
i.e., the model: for such a small number of arms, no graft-
ing saturation is present and the diffusion constant is im-
mediately deduced from the expression for friction given
by the models.

A test between the remaining models (and all other
possible models that satisfy Eq. (32)) can thus be pro-
vided by a study of the diffusion constant of star poly-
mers in a melt of longer, linear molecules. It is necessary
to vary the arm length and to record the corresponding
variations of the diffusion constant. Precise synthesis of
stars is thus required. Laser velocimetry and photobleach-
ing techniques should then provide a mean for measuring
the corresponding very slow diffusion dynamics.

To summarize, no final test of the models for the trap-
ping number has been carried out yet. Two models are still
valid: the binary entanglement model and the correlated
binary entanglement model.

8 Very high grafting densities:
a new topological behaviour?

In the saturated grafting regime as it was described in
Section 4, the threshold velocity V ? for the onset of the
marginal regime is found to be proportional to the graft-
ing density σ (Eqs. (24, 26)). Below V ?(σ), chains are pro-
gressively stretched as the velocity is increased. It was also
shown (Sect. 3) that grafted chains are stretched (Λ ' Λe)
and flushed against the solid wall when V ≥ V ??.

Therefore, at very high grafting densities, when it is
expected that V ?(σ) > V ??, the above descriptions yield
contradictory predictions for the conformations of the
grafted chains for V ?? ≤ V ≤ V ?(σ): on the one hand,
they should be only partially stretched since they should
not have reached the marginal regime (V ≤ V ?(σ)), and
on the other hand, they should be marginally stretched
(blob size Λe) and flushed against the wall (V ≥ V ??).
We therefore expect a sudden elongation of the chains at
some velocity V ?eff (σ) ≤ V ??.

Hence, at grafting densities higher than

σ?? '
aηP Λ

2
e

kT Trep(P )
σPmax, (33)

although the exact mechanism for it is not understood,
we expect a drop in b(V ) at some velocity V ?eff (σ) ≤ V ??.
Experimentally, a decrease of V ?(σ) is indeed observed be-
yond some threshold grafting density. Furthermore, some
of the data presented by Durliat [14] for high grafting den-
sities do not seem to be incompatible with a drop of b(V ).

The precise behaviour of the grafted chains in such a
regime is not understood yet. We suspect the existence of
a new topological behaviour, however. Indeed, stretched
chains are fixed at one point, oriented along the direction
of flow and mutually entangled laterally. Thus, they have
a “braid” geometry: the corresponding results from the
theory of knots (see for instance Ref. [35]) should be partly
applicable. Here, grafted chains are combed by the flow
of the entangled melt and conversely, lateral fluctuations
of the chains ensure reentanglement. Upon increasing the
melt velocity, the braid is progressively disentangled. A
more detailed work on this point will be required.

9 Conclusions

We discussed different molecular models for wall slip of
polymer melts. The 1992 model, whose predictions dis-
play a marked qualitative discrepancy with experimen-
tal results, is a one-chain model based on the total en-
tanglement assumption; friction is described through the
forced sliding mechanism. We showed that the tube re-
newal mechanism is more realistic a description of friction,
and that it predicts new features of the marginal regime
(Sects. 3, 6). Different assumptions can be made concern-
ing entanglements: binary model, correlated binary model
(Sect. 4). But these models yield different predictions only
if the grafting density is very weak (Sect. 5). Such weak
grafting densities have not been obtained experimentally
yet. But it was indicated (Sect. 7) that some models can
be ruled out because they do not crossover to the cor-
rect disentangled friction as melts of shorter molecules are
used, and that a study of the diffusion dynamics of star
polymers in a melt of longer chains could provide a test
between the remaining models. The determination of the
correct model should yield an interesting point of view on
the nature of entanglements (see beginning of Sect. 7).

Two main directions for future theoretical work were
outlined. It was shown (Sect. 8) that at very high grafting
densities, topological effects due to the mutual entangle-
ments of the grafted chains are expected to arise. In the
practical situation of an adsorbed polymer layer, the vol-
ume fraction of the layer is not negligible, mutual entan-
glements exist and similar effects should be present, with
some differences due to the fact that adsorbed chains con-
tain mainly loops, rather than tails.

Another direction is the network limit (with a melt of
ultra-long chains). The rearrangement of grafted chains
then becomes the dominant relaxation process: grafted
chains retract and relax back into the melt. This mech-
anism is similar to the “reptation” of branched polymers.

I am very grateful to F. Boué, P. Fabre, P.-G. de Gennes,
L. Leibler and E. Raphaël for very interesting discussions, and
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to F. Boué for suggesting a test of the predictions concerning
transverse fluctuations of the grafted chains. I wish to thank
the team of the Laboratoire CNRS-Elf Atochem where the
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